Image Processing

Cosimo Distante

Lecture: Alignment
Today: Alignment

- Homographies
- Rotational Panoramas
- RANSAC
- Global alignment
- Warping
Motivation: Recognition

Figures from David Lowe
Motivation: medical image registration
Motivation: Mosaics

• Getting the whole picture
 – Consumer camera: 50° x 35°
Motivation: Mosaics

• Getting the whole picture
 – Consumer camera: 50° x 35°
 – Human Vision: 176° x 135°
Motivation: Mosaics

• Getting the whole picture
 – Consumer camera: 50° x 35°
 – Human Vision: 176° x 135°

• Panoramic Mosaic = up to 360 x 180°

Slide from Brown & Lowe 2003
Motion models
Motion models

• What happens when we take two images with a camera and try to align them?
• translation?
• rotation?
• scale?
• affine?
• perspective?
• ... see interactive demo (VideoMosaic)
Image Warping
Image Warping

• image filtering: change range of image
 \[g(x) = h(f(x)) \]

• image warping: change domain of image
 \[g(x) = f(h(x)) \]
Image Warping

• image filtering: change range of image
 • \(g(x) = h(f(x)) \)

\[f \rightarrow h \rightarrow g \]

• image warping: change domain of image
 • \(g(x) = f(h(x)) \)

\[f \rightarrow h \rightarrow g \]
Parametric (global) warping

- Examples of parametric warps:
 - translation
 - rotation
 - aspect
 - affine
 - perspective
 - cylindrical

Szeliski
Image Warping

• Given a coordinate transform $x' = h(x)$ and a source image $f(x)$, how do we compute a transformed image $g(x') = f(h(x))$?
Forward Warping

- Send each pixel $f(x)$ to its corresponding location $x' = h(x)$ in $g(x')$
- What if pixel lands “between” two pixels?
Forward Warping

• Send each pixel \(f(x) \) to its corresponding location \(x' = h(x) \) in \(g(x') \)

• What if pixel lands “between” two pixels?
• Answer: add “contribution” to several pixels, normalize later (splatting)
Inverse Warping

• Get each pixel $g(x')$ from its corresponding location $x' = h(x)$ in $f(x)$
• What if pixel comes from “between” two pixels?
Inverse Warping

• Get each pixel $g(x')$ from its corresponding location $x' = h(x)$ in $f(x)$

• What if pixel comes from “between” two pixels?

• Answer: resample color value from interpolated (prefiltered) source image

$g(x')$
Inverse warping

Get each pixel \(g(x',y') \) from its corresponding location \((x,y) = T^{-1}(x',y')\) in the first image.

Q: what if pixel comes from “between” two pixels?

A: *Interpolate* color value from neighbors
 - nearest neighbor, bilinear…

>> help interp2

Slide from Alyosha Efros, CMU
Bilinear interpolation

Sampling at $f(x, y)$:

$$f(x, y) = (1 - a)(1 - b) \cdot f[i, j] + a(1 - b) \cdot f[i + 1, j] + ab \cdot f[i + 1, j + 1] + (1 - a)b \cdot f[i, j + 1]$$

Slide from Alyosha Efros, CMU
Interpolation

• Possible interpolation filters:
 – nearest neighbor
 – bilinear
 – bicubic (interpolating)
 – sinc / FIR

• Needed to prevent “jaggies” and “texture crawl”
2D coordinate transformations

• translation: \(x' = x + t \) \(x = (x,y) \)

• rotation: \(x' = R \cdot x + t \)

• similarity: \(x' = s \cdot R \cdot x + t \)

• affine: \(x' = A \cdot x + t \)

• perspective: \(x' \cong H \cdot \underline{x} \) \(\underline{x} = (x,y,1) \)
 \((\underline{x} \) is a homogeneous coordinate)\)

• These all form a nested group (closed w/ inv.)
Example: discovering translation

Given matched points in \(\{A\} \) and \(\{B\} \), estimate the translation of the object

\[
\begin{bmatrix}
x^B_i \\
y^B_i
\end{bmatrix}
= \begin{bmatrix}
x^A_i \\
y^A_i
\end{bmatrix}
+ \begin{bmatrix}
t_x \\
t_y
\end{bmatrix}
\]
Example: discovering rot/trans/scale

Given matched points in \(\{A\} \) and \(\{B\} \), estimate the transformation matrix

\[
\begin{bmatrix}
 x_i^B \\
 y_i^B
\end{bmatrix} = T \begin{bmatrix}
 x_i^A \\
 y_i^A
\end{bmatrix} + \begin{bmatrix}
 t_x \\
 t_y
\end{bmatrix}
\]

\[
T = \begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\]
Parametric (global) transformations

Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

What does it mean that T is global?

- T is the same for any point p

 T can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

$$p' = Tp$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Translate

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} = \begin{bmatrix}
 s_x & 0 & 0 \\
 0 & s_y & 0 \\
 0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Scale

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} = \begin{bmatrix}
 \cos \Theta & -\sin \Theta & 0 \\
 \sin \Theta & \cos \Theta & 0 \\
 0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Rotate

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} = \begin{bmatrix}
 1 & sh_x & 0 \\
 sh_y & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Shear

Source: Alyosha Efros
2-D Rotation

\[x' = x \cos(\theta) - y \sin(\theta) \]
\[y' = x \sin(\theta) + y \cos(\theta) \]
2-D Rotation

This is easy to capture in matrix form:

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
\end{bmatrix}\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

Even though \(\sin(\theta)\) and \(\cos(\theta)\) are nonlinear functions of \(\theta\),

- \(x'\) is a linear combination of \(x\) and \(y\)
- \(y'\) is a linear combination of \(x\) and \(y\)

What is the inverse transformation?

- Rotation by \(-\theta\)
- For rotation matrices \(R^{-1} = R^T\)
Affine Transformations

Affine transformations are combinations of

• Linear transformations, and
• Translations

Properties of affine transformations:

• Lines map to lines
• Parallel lines remain parallel
• Ratios are preserved
• Closed under composition

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 a & b & c \\
 d & e & f
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

or

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]
Projective Transformations

\[
\begin{bmatrix}
 x' \\
 y' \\
 w'
\end{bmatrix} = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]

Properties of projective transformations:
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis
- Projective matrix is defined up to a scale (8 DOF)

Projective transformations:
- Affine transformations, and
- Projective warps

Figure 3.44: Image warping involves modifying the domain of an image function rather than its range.

Figure 3.45: Basic set of 2D geometric image transformations.
Fitting and Alignment

Fitting:
Find the parameters of a model that best fit the data.

Alignment:
Find the parameters of the transformation that best aligns matched points.
Fitting and Alignment

• Challenges
 – Design a suitable **goodness of fit** measure
 • Similarity should reflect application goals
 • Encode robustness to outliers and noise

 – Design an **optimization** method
 • Avoid local optima
 • Find best parameters quickly

 – Typically want to solve for a global transformation that accounts for **the most** true correspondences
 • Noise (typically 1-3 pixels)
 • Outliers (often 50%)
 • Many-to-one matches or multiple objects
Fitting and Alignment: Methods

• Global optimization / search for parameters
 – Least squares fit
 – Robust least squares
 – Iterative closest point (ICP)

• Hypothesize and test
 – RANSAC
Fitting and Alignment: Methods

• Global optimization / search for parameters
 – Least squares fit
 – Robust least squares
 – Iterative closest point (ICP)

• Hypothesize and test
 – Generalized Hough transform
 – RANSAC
Simple example: Fitting a line
Least squares line fitting

- Data: \((x_1, y_1), \ldots, (x_n, y_n)\)
- Line equation: \(y_i = mx_i + b\)
- Find \((m, b)\) to minimize

\[
E = \sum_{i=1}^{n} (y_i - mx_i - b)^2
\]

\[
E = \sum_{i=1}^{n} \left(\begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - y_i \right)^2 = \left\| \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right\|^2 = \| Ap - y \|^2
\]

\[
y = mx + b
\]

\[
\]

\[
\frac{dE}{dp} = 2A^T Ap - 2A^T y = 0
\]

Matlab: \(p = A \backslash y; \)

\[
A^T Ap = A^T y \Rightarrow p = (A^T A)^{-1} A^T y \quad \text{(Closed form solution)}
\]

Modified from S. Lazebnik
Example: solving for translation

Given matched points in \{A\} and \{B\}, estimate the translation of the object

\[
\begin{bmatrix}
x_i^B \\
y_i^B
\end{bmatrix} = \begin{bmatrix}
x_i^A \\
y_i^A
\end{bmatrix} + \begin{bmatrix}
t_x \\
t_y
\end{bmatrix}
\]
Example: solving for translation

Least squares solution
1. Write down objective function
2. Derived solution
 a) Compute derivative
 b) Compute solution
3. Computational solution
 a) Write in form $Ax=p$
 b) Solve using closed-form solution
Two broad approaches:
- Direct (pixel-based) alignment
 - Search for alignment where most pixels agree
- Feature-based alignment
 - Search for alignment where extracted features agree
 - Can be verified using pixel-based alignment

Source: L. Lazebnik
Fitting an affine transformation

Affine model approximates perspective projection of planar objects.

Figures from David Lowe, ICCV 1999
Fitting an affine transformation

• Assuming we know the correspondences, how do we get the transformation

\[
\begin{bmatrix}
{x'_i} \\
{y'_i}
\end{bmatrix} = \begin{bmatrix}
m_1 & m_2 \\
m_3 & m_4
\end{bmatrix} \begin{bmatrix}
x_i \\
y_i
\end{bmatrix} + \begin{bmatrix}
t_1 \\
t_2
\end{bmatrix}
\]
Fitting an affine transformation

- Assuming we know the correspondences, how do we get the transformation?

\[
\begin{bmatrix}
 x_i' \\
 y_i'
\end{bmatrix} = \begin{bmatrix}
 m_1 & m_2 \\
 m_3 & m_4
\end{bmatrix} \begin{bmatrix}
 x_i \\
 y_i
\end{bmatrix} + \begin{bmatrix}
 t_1 \\
 t_2
\end{bmatrix}
\]
Fitting an affine transformation

\[
\begin{bmatrix}
 x_i & y_i & 0 & 0 & 1 & 0 \\
 0 & 0 & x_i & y_i & 0 & 1 \\
 \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix}
\begin{bmatrix}
 m_1 \\
 m_2 \\
 m_3 \\
 m_4 \\
 t_1 \\
 t_2 \\
\end{bmatrix}
= \begin{bmatrix}
 x_i' \\
 y_i' \\
 \cdots \\
\end{bmatrix}
\]

- How many matches (correspondence pairs) do we need to solve for the transformation parameters?
- Once we have solved for the parameters, how do we compute the coordinates of the corresponding point for \((x_{new}, y_{new})\)?
Panoramas

Obtain a wider angle view by combining multiple images.

image from S. Seitz

Grauman
How to stitch together a panorama?

• Basic Procedure
 – Take a sequence of images from the same position
 • Rotate the camera about its optical center
 – Compute transformation between second image and first
 – Transform the second image to overlap with the first
 – Blend the two together to create a mosaic
 – (If there are more images, repeat)

• …but wait, why should this work at all?
 – What about the 3D geometry of the scene?
 – Why aren’t we using it?

Source: Steve Seitz
Panoramas: generating synthetic views

Can generate any synthetic camera view as long as it has the same center of projection!

Source: Alyosha Efros
Image reprojection

The mosaic has a natural interpretation in 3D
• The images are reprojected onto a common plane
• The mosaic is formed on this plane
• Mosaic is a *synthetic wide-angle camera*

Source: Steve Seitz
Homography

How to relate two images from the same camera center?
- how to map a pixel from PP1 to PP2?

Think of it as a 2D image warp from one image to another.

A projective transform is a mapping between any two PPs with the same center of projection
- rectangle should map to arbitrary quadrilateral
- parallel lines aren’t
- but must preserve straight lines

called **Homography**

\[
\begin{bmatrix}
wx' \\
wy' \\
w \\
p'
\end{bmatrix} = \begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
*
\end{bmatrix} \begin{bmatrix}
x \\
y \\
l
\end{bmatrix}
\]

Source: Alyosha Efros
To apply a given homography H

- Compute $p' = Hp$ (regular matrix multiply)
- Convert p' from homogeneous to image coordinates

\[
\begin{bmatrix}
wx' \\
wy' \\
w \\
p'
\end{bmatrix} =
\begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
H & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]
To compute the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of H are the unknowns...
Number of measurements required

- At least as many independent equations as degrees of freedom required
- Example:

\[
\begin{bmatrix}
 x' \\
y' \\
1
\end{bmatrix}
\lambda
=
\begin{bmatrix}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33} \\
1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

2 independent equations / point
8 degrees of freedom
4x2≥8
Approximate solutions

• **Minimal solution**
 4 points yield an exact solution for H

• **More points**
 - No exact solution, because measurements are inexact ("noise")
 - Search for "best" according to some cost function
 - Algebraic or geometric/statistical cost
Gold Standard algorithm

• Cost function that is optimal for some assumptions
• Computational algorithm that minimizes it is called “Gold Standard” algorithm
• Other algorithms can then be compared to it
Direct Linear Transformation (DLT)

\[x'_i = Hx_i \]

\[x'_i \times Hx_i = 0 \]

\[x'_i = (x'_i, y'_i, w'_i)^T \quad Hx_i = \begin{pmatrix} h^1_T x_i \\ h^2_T x_i \\ h^3_T x_i \end{pmatrix} \]

\[x'_i \times Hx_i = \begin{pmatrix} y'_i h^3_T x_i - w'_i h^2_T x_i \\ w'_i h^1_T x_i - x'_i h^3_T x_i \\ x'_i h^2_T x_i - y'_i h^1_T x_i \end{pmatrix} \]

\[\begin{bmatrix} 0^T & -w'_i x_i^T & y'_i x_i^T \\ w'_i x_i^T & 0^T & -x'_i x_i^T \\ -y'_i x_i^T & x'_i x_i^T & 0^T \end{bmatrix} \begin{pmatrix} h^1 \\ h^2 \\ h^3 \end{pmatrix} = 0 \]

\[A_i h = 0 \]
Direct Linear Transformation (DLT)

- Equations are linear in \(h \)
 \[
 A_i h = 0
 \]
- Only 2 out of 3 are linearly independent (indeed, 2 eq/pt)

\[
\begin{bmatrix}
0^T & -w_i'x_i^T & y_i'x_i^T \\
w_i'x_i^T & 0^T & -x_i'x_i^T \\
-y_i'x_i^T & x_i'x_i^T & 0^T \\
\end{bmatrix}
\begin{pmatrix}
h^1 \\
h^2 \\
h^3 \\
\end{pmatrix} = 0
\]

\[
x_i' A_i^1 + y_i' A_i^2 + w_i' A_i^3 = 0
\]
Direct Linear Transformation (DLT)

- Equations are linear in h
 \[A_i h = 0 \]
- Only 2 out of 3 are linearly independent (indeed, 2 eq/pt)

\[
\begin{bmatrix}
0^T & -w_i'x_i^T & y_i'x_i^T \\
w_i'x_i^T & 0^T & -x_i'x_i^T
\end{bmatrix}
\begin{pmatrix}
h_1^1 \\
h_2^2 \\
h_3^3
\end{pmatrix} = 0
\]
 (only drop third row if $w_i' \neq 0$)

- Holds for any homogeneous representation, e.g. $(x_i', y_i', 1)$
Direct Linear Transformation (DLT)

• Solving for \(H \)

\[
Ah = 0
\]

size \(A \) is 8x9 or 12x9, but rank 8

Trivial solution is \(h=0_9^T \) is not interesting

1-D null-space yields solution of interest

pick for example the one with \(\|h\| = 1 \)
Direct Linear Transformation (DLT)

• Solving for H

\[
\begin{bmatrix}
A_1 \\
A_2 \\
A_3 \\
A_4
\end{bmatrix} h = 0
\]

Trivial solution is $h=0^T_9$ is not interesting

1-D null-space yields solution of interest

pick for example the one with $\|h\| = 1$
Direct Linear Transformation (DLT)

- **Over-determined solution**

\[
\begin{bmatrix}
A_1 \\
A_2 \\
\vdots \\
A_n
\end{bmatrix} h = 0 \quad \Rightarrow \quad Ah = 0
\]

No exact solution because of inexact measurement i.e. “noise”
Find approximate solution
- Additional constraint needed to avoid 0, e.g. \(\|h\| = 1 \)
- \(Ah = 0 \) not possible, so minimize \(\|Ah\| \)
Singular Value Decomposition

\[A = U \Sigma V^T \]

Homogeneous least-squares

\[\min \| AX \| \text{ subject to } \| X \| = 1 \]

solution \(X = V_n \)

Last column of \(V \)
DLT algorithm

Objective
Given \(n \geq 4 \) 2D to 2D point correspondences \(\{x_i \leftrightarrow x_i'\} \), determine the 2D homography matrix \(H \) such that \(x_i' = Hx_i \).

Algorithm
(i) For each correspondence \(x_i \leftrightarrow x_i' \) compute \(A_i \). Usually only two first rows needed.
(ii) Assemble \(n \) 2x9 matrices \(A_i \) into a single 2nx9 matrix \(A \)
(iii) Obtain SVD of \(A \). Solution for \(h \) is last column of \(V \)
(iv) Determine \(H \) from \(h \)
Inhomogeneous solution

Since h can only be computed up to scale, pick $h_j=1$, e.g. $h_9=1$, and solve for 8-vector \tilde{h}

\[
\begin{bmatrix}
0 & 0 & 0 & -x_i w'_i & -y_i w'_i & -w_i w'_i & x_i y'_i & y_i y'_i \\
x_i w'_i & y_i w'_i & w_i w'_i & 0 & 0 & 0 & x_i x'_i & y_i x'_i
\end{bmatrix}
\tilde{h} = \begin{pmatrix} -w_i y'_i \\ w_i x'_i \end{pmatrix}
\]

Solve using Gaussian elimination (4 points) or using linear least-squares (more than 4 points)

However, if $h_9=0$ this approach fails
also poor results if h_9 close to zero
Therefore, not recommended
Recap: How to stitch together a panorama?

• Basic Procedure
 – Take a sequence of images from the same position
 • Rotate the camera about its optical center
 – Compute transformation between second image and first
 – Transform the second image to overlap with the first
 – Blend the two together to create a mosaic
 – (If there are more images, repeat)

Source: Steve Seitz
Image warping with homographies

Source: Steve Seitz
Image rectification

![Image showing image rectification with points p and p']
Analysing patterns and shapes

What is the shape of the b/w floor pattern?

The floor (enlarged)

Slide from Criminisi

Automatically rectified floor

Homography
Analysing patterns and shapes

From Martin Kemp *The Science of Art* (manual reconstruction)

Slide from Criminisi
Analysing patterns and shapes

What is the (complicated) shape of the floor pattern?

Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano

Slide from Criminisi
Analysing patterns and shapes

From Martin Kemp, *The Science of Art* (manual reconstruction)

Automatic rectification

Slide from Criminisi
changing camera center

Does it still work?

Source: Alyosha Efros
Planar scene (or far away)

PP3 is a projection plane of both centers of projection, so we are OK!

This is how big aerial photographs are made.

Source: Alyosha Efros
Outliers

- Outliers can hurt the quality of our parameter estimates, e.g.,
 - an erroneous pair of matching points from two images
 - an edge point that is noise, or doesn’t belong to the line we are fitting.
Example: least squares line fitting

• Assuming all the points that belong to a particular line are known
Outliers affect least squares fit
Outliers affect least squares fit
RANSAC

• RANdom Sample Consensus

• Approach: we want to avoid the impact of outliers, so let’s look for “inliers”, and use those only.

• Intuition: if an outlier is chosen to compute the current fit, then the resulting line won’t have much support from rest of the points.
RANSAC

• **RANSAC loop:**

1. Randomly select a *seed group* of points on which to base transformation estimate (e.g., a group of matches)
2. Compute transformation from seed group
3. Find *inliers* to this transformation
4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers

• Keep the transformation with the largest number of inliers
RANSAC

(RANdom SAmple Consensus):

Fischler & Bolles in ‘81.
RANSAC

(RANdom SAmple Consensus):

Fischler & Bolles in ‘81.
RANSAC

(RANdom SAmple Consensus):

Fischler & Bolles in ‘81.

This data is noisy, but we expect a good fit to a known model.
RANSAC

(RANdom SAmple Consensus):

Fischler & Bolles in ‘81.

This data is noisy, but we expect a good fit to a known model.

Here, we expect to see a line, but least-squares fitting will produce the wrong result due to strong outlier presence.
RANSAC

(RANdom SAmple Consensus):

Fischler & Bolles in ‘81.

Algorithm:

1. **Sample** (randomly) the number of points \(s \) required to fit the model
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model (s=2)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model ($s=2$)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
RANSAC

Algorithm:

1. **Sample** (randomly) the number of points required to fit the model \((s=2)\)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model ($s=2$)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
How to choose parameters?

- **Number of samples** N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g., $p=0.99$) (outlier ratio: e)

- **Number of sampled points** s
 - Minimum number needed to fit the model

- **Distance threshold** δ
 - Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
 - Zero-mean Gaussian noise with std. dev. σ: $t^2=3.84\sigma^2$

\[
N = \log(1-p)/\log(1-(1-e)^s)
\]

<table>
<thead>
<tr>
<th>Proportion of outliers e</th>
<th>s</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>26</td>
<td>57</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>24</td>
<td>37</td>
<td>97</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>33</td>
<td>54</td>
<td>163</td>
<td>588</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>44</td>
<td>78</td>
<td>272</td>
<td>1177</td>
</tr>
</tbody>
</table>

For $p = 0.99$

modified from M. Pollefeys
Reprojection error in geometric transformations

\[d(x, H^{-1}x')^2 + d(x', Hx)^2 \]

Also called **symmetric transfer error**
RANSAC example: Translation

Source: Rick Szeliski
RANSAC example: Translation

Select *one* match, count *inliers*
RANSAC example: Translation

Select one match, count inliers
RANSAC example: Translation

Find “average” translation vector
RANSAC example:
Fig. 7. How the algorithm works to detect multiple logo occurrences in images (Color figure online)

Fig. 8. Example of the logo detection: the red stars represent inliers whereas the blue ones represent outliers (Color figure online)

It is also possible to note how the algorithm is robust against heavy logo occlusions (see Fig. 9).

In Table 1 are reported the detection performance: the lowest detection rate was obtained for the Skoda logo (see Fig. 10d). We expected this result because the Skoda logo was mainly located on the pilot’s sleeves and this means that it was difficult to estimate an in-plane geometric transformation since the features points lie on no-plane surface. Same considerations for the detection rate experienced for the Cariparma logo that was, often, located on the players’ shirt. However in that case, the implemented geometric estimator correctly handled this quasi-planar surface, allowing successful detections of the logo areas (see Fig. 10c).

Logo Detection in Broadcast Videos

Homography estimation in real case
Homography estimation in real case

Estimating the depth of the beach for coastal erosion issue
Homography estimation in real case

Example of processing pipeline for the beach depth estimation with a videosurveillance camera
Feature-based alignment outline

Source: L. Lazebnik
Feature-based alignment outline

- Extract features

Source: L. Lazebnik
Feature-based alignment outline

- Extract features
- Compute *putative matches*
Feature-based alignment outline

- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation T (small group of putative matches that are related by T)

Source: L. Lazebnik
Feature-based alignment outline

- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation T (small group of putative matches that are related by T)
 - *Verify* transformation (search for other matches consistent with T)

Source: L. Lazebnik
Feature-based alignment outline

- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation T (small group of putative matches that are related by T)
 - *Verify* transformation (search for other matches consistent with T)

Source: L. Lazebnik
Towards large-scale mosaics...
Motion models

- Translation: 2 unknowns
- Affine: 6 unknowns
- Perspective: 8 unknowns
- 3D rotation: 3 unknowns
Plane perspective mosaics

- 8-parameter homographies

- Limitations:
 - local minima
 - slow convergence
 - difficult to control interactively
Rotational mosaics

– Directly optimize rotation and focal length

– **Advantages:**

 - ability to build full-view panoramas
 - easier to control interactively
 - more stable and accurate estimates
3D \rightarrow 2D Perspective Projection

\[
\begin{bmatrix}
X_c \\
Y_c \\
Z_c
\end{bmatrix} = \begin{bmatrix}
R
\end{bmatrix}_{3\times3} \begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} + t
\]

\[
\begin{bmatrix}
u \\
v \\
1
\end{bmatrix} \sim \begin{bmatrix}
U \\
V \\
W
\end{bmatrix} = \begin{bmatrix}
f & 0 & u_c \\
0 & f & v_c \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
X_c \\
Y_c \\
Z_c
\end{bmatrix}
\]
PnP(1)
Perspective n-Point Problem

- Calibrated camera \(K, C = (KK^T)^{-1} \)
- \(n \) point correspondences scene ↔ image
- Known scene coordinates of \(p_i \), and known distances \(d_{ij} = \| p_i - p_j \| \)
- Each pair \((p_i, p_j)\) defines an angle \(\theta \)
- \(\theta \) can be measured (2 lines of sight, calibrated camera)
 \(\Rightarrow \) constraint for the distance \(\| c - p_i \| \)
PnP (2)

searching: \[x_i = \|p_i - c\|, \quad x_j = \|p_j - c\| \]

constraint: \[d_{ij}^2 = x_i^2 + x_j^2 - 2x_i x_j \cos \theta_{ij} \]

\[f_{ij}(x_i, x_j) = x_i^2 + x_j^2 - 2x_i x_j \cos \theta_{ij} - d_{ij}^2 = 0 \]

calibrated camera: \[\cos \theta_{ij} = \frac{u_i^T Cu_j}{\sqrt{u_i^T Cu_i} \sqrt{u_j^T Cu_j}} \]
PnP (3)

- **P3P, 3 points:**
 underdetermined, 4 solutions
 \[
 \begin{align*}
 f_{12}(x_1, x_2) &= 0 \\
 f_{13}(x_1, x_3) &= 0 \\
 f_{23}(x_2, x_3) &= 0
 \end{align*}
 \]

- **P4P, 4 points:**
 overdetermined, 6 equations, 4 unknowns
 \[
 \begin{align*}
 f_{12}(x_1, x_2) &= 0 \\
 f_{13}(x_1, x_3) &= 0 \\
 f_{23}(x_2, x_3) &= 0
 \end{align*}
 \]
 \[4 \times P3P, \text{ then find a common solution}\]

- **General problem:** PnP, \(n \) points
Once the x_i have been solved:

1) project image points \rightarrow scene

\[p'_i = x_i K^{-1} u_i \]

2) find a common R, t for $p'_i \leftrightarrow p_i$

(point-correspondences \rightarrow solve a simple system of linear equations)
Absolute orientation for P3P

Once we have all λ_i, $x_i' = \lambda_i K^{-1} u_i$ Then solve a similarity transform:

$$x_i' = s Rx_i + t.$$

Algorithm 2 (The three-point pose) Given the calibration matrix K of the camera and three 3D-2D point correspondences $x_i \leftrightarrow u_i$ for $i = 1, \ldots, 3$, compute the rotation R and translation t of the camera with respect to the points x_i.

1. Convert 3D points x_i in coordinates into pair-wise distances d_{ij}. Convert 2D image points u_i into the pair-wise angular measures $\cos \theta_{ij}$ with the calibration matrix K.
2. Compute the coefficients of the fourth degree polynomial in x from the quadratic equations.
3. Solve the equation in closed-form. For each solution of x, get all the camera-point distances λ_i.
4. Convert back the distances λ_i into the 3D points x'.
5. Estimate the similarity transformation, the scale, the rotation and the translation, between the two sets of 3D points x_i and x'_i.

There are at most four solutions to R and t.

Szeliski
Application to faces

http://dlib.net

Matlab face frontalization http://www.openu.ac.il/home/hassner/code.html
Application to faces

// Reading image using OpenCV, you may use dlib as well.
cv::Mat img = cv::imread(imagePath);

std::vector<double> rv(3), tv(3);
cv::Mat rvec(rv), tvec(tv);
cv::Vec3d eav;

// Labelling the 3D Points derived from a 3D model of human face.
// You may replace these points as per your custom 3D head model if any
std::vector<cv::Point3f> modelPoints;
modelPoints.push_back(cv::Point3f(2.37427,110.322,21.7776)); // l eye (v 314)
modelPoints.push_back(cv::Point3f(70.0602,109.898,20.8234)); // r eye (v 0)
modelPoints.push_back(cv::Point3f(36.8301,78.3185,52.0345)); // nose (v 1879)
modelPoints.push_back(cv::Point3f(14.8498,51.0115,30.2378)); // l mouth (v 1502)
modelPoints.push_back(cv::Point3f(58.1825,51.0115,29.6224)); // r mouth (v 695)
modelPoints.push_back(cv::Point3f(-61.8886f,127.797,-89.4523f)); // l ear (v 1138)
modelPoints.push_back(cv::Point3f(127.603,126.9,-83.9129f)); // r ear (v 1138)

// labelling the position of corresponding feature points on the input image.
std::vector<cv::Point2f> srcImagePoints = {cv::Point2f(442, 442), // left eye
 cv::Point2f(529, 426), // right eye
 cv::Point2f(501, 479), // nose
 cv::Point2f(469, 534), // left lip corner
 cv::Point2f(538, 521), // right lip corner
 cv::Point2f(349, 457), // left ear
 cv::Point2f(578, 415) // right ear};
Application to faces

cv::Mat ip(srcImagePoints);

cv::Mat op = cv::Mat(modelPoints);
cv::Scalar m = mean(cv::Mat(modelPoints));

rvec = cv::Mat(rv);
double _d[9] = {1,0,0,
 0,-1,0,
 0,0,-1};
Rodrigues(cv::Mat(3,3,CV_64FC1,_d),rvec);
tv[0]=0;tv[1]=0;tv[2]=1;
tvec = cv::Mat(tv);

double max_d = MAX(img.rows,img.cols);
double _cm[9] = {max_d, 0, (double)img.cols/2.0,
 0, max_d, (double)img.rows/2.0,
 0, 0, 1.0};
cv::Mat camMatrix = cv::Mat(3,3,CV_64FC1, _cm);

double _dc[] = {0,0,0,0};
solvePnP(op,ip,camMatrix,cv::Mat(1,4,CV_64FC1, _dc),rvec,tvec,false,CV_EPNP);
Application to faces

Head Pose Estimation using OpenCV and Dlib